Fast Hierarchy Construction for Dense Subgraphs
نویسندگان
چکیده
Discovering dense subgraphs and understanding the relations among them is a fundamental problem in graph mining. We want to not only identify dense subgraphs, but also build a hierarchy among them (e.g., larger but sparser subgraphs formed by two smaller dense subgraphs). Peeling algorithms (k-core, k-truss, and nucleus decomposition) have been effective to locate many dense subgraphs. However, constructing a hierarchical representation of density structure, even correctly computing the connected k-cores and k-trusses, have been mostly overlooked. Keeping track of connected components during peeling requires an additional traversal operation, which is as expensive as the peeling process. In this paper, we start with a thorough survey and point to nuances in problem formulations that lead to significant differences in runtimes. We then propose efficient and generic algorithms to construct the hierarchy of dense subgraphs for k-core, k-truss, or any nucleus decomposition. Our algorithms leverage the disjoint-set forest data structure to efficiently construct the hierarchy during traversal. Furthermore, we introduce a new idea to avoid traversal. We construct the subgraphs while visiting neighborhoods in the peeling process, and build the relations to previously constructed subgraphs. We also consider an existing idea to find the k-core hierarchy and adapt for our objectives efficiently. Experiments on different types of large scale real-world networks show significant speedups over naive algorithms and existing alternatives. Our algorithms also outperform the hypothetical limits of any possible traversal-based solution.
منابع مشابه
HiDDen: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection
Dense subgraphs are fundamental patterns in graphs, and dense subgraph detection is often the key step of numerous graph mining applications. Most of the existing methods aim to find a single subgraph with a high density. However, dense subgraphs at different granularities could reveal more intriguing patterns in the underlying graph. In this paper, we propose to hierarchically detect dense sub...
متن کاملComplexes Detection in Biological Networks via Diversified Dense Subgraphs Mining
Protein-protein interaction (PPI) networks, providing a comprehensive landscape of protein interacting patterns, enable us to explore biological processes and cellular components at multiple resolutions. For a biological process, a number of proteins need to work together to perform the job. Proteins densely interact with each other, forming large molecular machines or cellular building blocks....
متن کاملFP-GraphMiner-A Fast Frequent Pattern Mining Algorithm for Network Graphs
In recent years, graph representations have been used extensively for modelling complicated structural information, such as circuits, images, molecular structures, biological networks, weblogs, XML documents and so on. As a result, frequent subgraph mining has become an important subfield of graph mining. This paper presents a novel Frequent Pattern Graph Mining algorithm, FP-GraphMiner, that c...
متن کاملDiscovering Large Dense Subgraphs in Massive Graphs
We present a new algorithm for finding large, dense subgraphs in massive graphs. Our algorithm is based on a recursive application of fingerprinting via shingles, and is extremely efficient, capable of handling graphs with tens of billions of edges on a single machine with modest resources. We apply our algorithm to characterize the large, dense subgraphs of a graph showing connections between ...
متن کاملOn Finding Dense Subgraphs
Given an undirected graph G = (V,E), the density of a subgraph on vertex set S is defined as d(S) = |E(S)| |S| , where E(S) is the set of edges in the subgraph induced by nodes in S. Finding subgraphs of maximum density is a very well studied problem. One can also generalize this notion to directed graphs. For a directed graph one notion of density given by Kannan and Vinay is as follows: given...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 10 شماره
صفحات -
تاریخ انتشار 2016